
Practitioners Teaching Data Science in Industry and
Academia: Expectations, Workflows, and Challenges

Sean Kross
UC San Diego

La Jolla, California, USA
seankross@ucsd.edu

Philip J. Guo
UC San Diego

La Jolla, California, USA
pg@ucsd.edu

ABSTRACT
Data science has been growing in prominence across both
academia and industry, but there is still little formal con-
sensus about how to teach it. Many people who currently
teach data science are practitioners such as computational
researchers in academia or data scientists in industry. To un-
derstand how these practitioner-instructors pass their knowl-
edge onto novices and how that contrasts with teachingmore
traditional forms of programming, we interviewed 20 data
scientists who teach in settings ranging from small-group
workshops to large online courses. We found that: 1) they
must empathize with a diverse array of student backgrounds
and expectations, 2) they teach technical workflows that
integrate authentic practices surrounding code, data, and
communication, 3) they face challenges involving authentic-
ity versus abstraction in software setup, finding and curating
pedagogically-relevant datasets, and acclimating students
to live with uncertainty in data analysis. These findings can
point the way toward better tools for data science education
and help bring data literacy to more people around the world.

CCS CONCEPTS
• Social and professional topics → Computing educa-
tion.

KEYWORDS
data science education; teaching programming
ACM Reference Format:
Sean Kross and Philip J. Guo. 2019. Practitioners Teaching Data
Science in Industry and Academia: Expectations, Workflows, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CHI 2019, May 4–9, 2019, Glasgow, UK
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5970-2/19/05. . . $15.00
https://doi.org/10.1145/3290605.3300493

Figure 1: An example technology stack thatmodern data sci-
entistsmust learn to do their job of writing code to obtain in-
sights from data in a robust and reproducible manner. They
often learn these skills from their fellow data scientists, not
from formal computing instructors.

Challenges. In CHI Conference on Human Factors in Computing Sys-
tems Proceedings (CHI 2019), May 4–9, 2019, Glasgow, UK.ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3290605.3300493

1 INTRODUCTION
People across a wide range of professions now write code
as part of their jobs, but the purpose of their code is often
to obtain insights from data rather than to build software
artifacts such as web or mobile apps. Although programmers
have been analyzing data for decades, in recent years the
popular term data science has emerged to encapsulate this
kind of activity. Data scientists are now pervasive throughout
both industry and academia: In industry, it is a fast-growing
job title across many sectors ranging from technology to
healthcare to public policy [49]. In academia, data scientists
are often STEM graduate students, postdocs, and technical
staff who write code to make research discoveries [32].

Despite its blossoming across many fields of practice, data
science has only recently begun to formalize as an academic
discipline, so there is still little consensus on what should go
into a data science curriculum [16, 21, 35, 37]. Many novice
data scientists are currently learning their craft and associ-
ated technology stacks (e.g., Figure 1) on the job from expert
practitioners rather than from full-time teachers. To under-
stand how these practitioner-instructors pass their knowledge
onto novices and what challenges they face, we conducted in-
terviews with 20 data scientists (five men and fifteen women)

https://doi.org/10.1145/3290605.3300493
https://doi.org/10.1145/3290605.3300493

who teach in both industry and academic settings ranging
from small-group workshops to large online courses. Our
participants come from backgrounds ranging from the life
sciences to the behavioral sciences to the humanities; none
have formal degrees in computer science.
We chose to study practitioner-instructors because they

are the ones defining both the technical and cultural norms
of this emerging professional community. Their insights can
inform the design of new programming tools and curricula
to train this growing population of diverse professionals
who are responsible for making advances across science,
technology, commerce, healthcare, journalism, and policy.

While prior work has studied what data science practition-
ers do on the job [32, 41, 42, 44, 64, 65], to our knowledge,
we are the first to systematically investigate how they teach
their craft to junior colleagues and students.

Our study extends the rich lineage of HCI research on how
people learn programming to pursue different career goals.
On one end, there is a long history of studies on teaching
computer science and engineering skills to those who aspire
to become professional software engineers [33, 60, 68]; on the
other end, there is a parallel literature on the learning needs
of end-user programmers [28, 47, 73]. Data scientists are a
distinct and so-far understudied population in between those
two extremes: They share similarities with both software
engineers (they aspire to write reusable analysis code to
share with their colleagues) and end-user programmers (they
view coding as a means to an end to gain insights from data).

We found that data science instructors must empathize
with a diverse array of student backgrounds and expecta-
tions. Also, despite many of their students viewing coding as
merely a means to an end, they still strive to teach disciplined
workflows that integrate authentic practices surrounding
code, data, and communication. Finally, they face challenges
involving authenticity versus abstraction in software setup,
finding and curating pedagogically-relevant datasets, and ac-
climating students to cope with uncertainty in data analysis.

These findings can point the way toward the design of spe-
cialized tools for data science education, such as block-based
programming environments, better ways to find and syn-
thesize datasets that are suitable for teaching, and fostering
discussions around data ethics and bias.

In sum, this paper’s contributions to HCI are:

• A synthesis of the technical workflows that data sci-
ence practitioners teach to novices, along with chal-
lenges they face in teaching. These findings advance
our understanding of a growing yet understudied pop-
ulation in between end-user programmers and profes-
sional software engineers.
• Design implications for specialized tools to facilitate
data science education.

2 RELATEDWORK
Our study was inspired by prior work in end-user program-
ming, teaching data science, practitioners as instructors, and
broadening computing education to learners who do not
self-identify as programmers.

Data Science and End-user Programming
Data science is a broad term that encompasses a wide variety
of activities related to acquiring, cleaning, processing, model-
ing, visualizing, and presenting data [35, 41]. Although data
visualization is a highly active area of HCI research, what
is more relevant to our study is prior HCI research on pro-
gramming as performed by non-professional programmers.
Kandel et al. found great variation in levels of program-

ming ability amongst data scientists [41]. Many of them
write code in languages such as Python and R [21, 25, 35, 37],
but they are not professional software engineers; moreover,
many do not even have formal training in computer science.
Much of data scientists’ coding activities can be considered
end-user programming [46] since they often write code for
themselves as a means to gain insights from data rather than
intending to produce reusable software artifacts. Related
terms for this type of insight-driven coding activity include
exploratory programming (from Kery et al. [42, 43]) and
research programming (from Guo’s dissertation [32]).

However, as we discovered in our study, modern data sci-
entists are not merely writing ad-hoc prototype code. They
are now developing increasingly mature technology stacks
for writing modular and reusable software (e.g., Figure 1). In
the terminology of Ko et al., they are now engaging in end-
user software engineering [46] with more of an emphasis on
code quality and reuse; in Segal’s related terminology, data
scientists are now becoming professional end-user develop-
ers [65]. Along these lines, software engineering researchers
such as Kim et al. have studied the role of data scientists
within industry engineering teams [44].

In contrast to prior HCI work that focuses on what data
science practitioners do on the job, our study instead focuses
on how they pass on those skills to novices via teaching.

Teaching Data Science
Data science is now a highly in-demand subject within both
academia and industry: Many universities are launching new
data science majors [69, 70], research labs are organizing
hands-on workshops [75], and MOOCs and coding boot-
camps focused on data science are some of the most popular
offerings [1, 2]. But despite this growing interest over the
past few years, there is still little agreement on what a data
science curriculum should contain [16, 21, 35, 37].
To our knowledge, there does not yet exist a systematic

research study on how data science is currently being taught.

The only publications on this topic are course design guides
and experience reports of how instructors have taught spe-
cific courses within their own fields. These papers fall into
two categories: descriptions of courses taught by computer
science (CS) faculty, and those taught by faculty in other
disciplines. CS faculty have written about their experiences
teaching data science both to enrich introductory comput-
ing courses with data-oriented applications [16, 17, 25, 34]
and in courses intended to serve non-CS-majors [14, 20, 61].
And faculty in fields ranging from bioinformatics [71], busi-
ness [21], and statistics [35, 37] have written field guides on
teaching data science in their respective majors. In particular,
data science within statistics curricula places more of an em-
phasis on computational workflows and tools rather than on
theoretical aspects of the underlying mathematics [35, 37].

Outside the classroom, instructors have also documented
their experiences teaching in informal settings. For instance,
the Software Carpentry [75] and Data Carpentry [4] orga-
nizations hold workshops to teach computing and data ana-
lysis to academic researchers; they also publish course de-
sign guides. Related groups have organized data-oriented
hackathons [15], hack weeks [39], and apprenticeships [67]
to train academic researchers in data science best practices.
In contrast to the aforementioned experience reports, to

our knowledge, ours is the first academic research study
that attempts to provide a broad overview of how modern
data science is taught by practitioner-instructors across both
industry and academia—synthesizing findings in a way that
transcends anecdotal experiences within individual courses.

Practitioner-instructors
Most of our participants were practitioner-instructors: data
science practitioners who also teach students. Practitioner-
instructors are often found in settings such asmedical schools
(clinical faculty) [50], art schools, business schools, and law
schools, where they are sometimes known as professors of
the practice [59]. Two noted benefits of learning from practi-
tioners are that they are likely up-to-date on the latest tools
in their field [53] and that they are more direct members of
the community of practice [48] that their students aspire to
join. However, they often lack formal pedagogical training:
Wilson refers to them as end-user teachers [76] (as an ana-
logue to end-user programmers) since they teach but are not
formally trained as professional teachers. To our knowledge,
researchers have not yet studied practitioner-instructors in
computing-related settings such as data science.

Computing Education for Broader Populations
Our study contributes to the growing body of HCI and com-
puting education work on teaching programming to broader
learner populations. Specifically, it extends prior work that
target people who do not self-identify as programmers.

Although much of computing education research targets
learners who aspire to become computer science majors or
professional programmers [60], there is a growing body of
studies on learners with other professional identities. For
instance, Ni et al. studied the challenges faced by high school
teachers who are learning programming in order to become
CS teachers [54, 55]. Dorn et al. studied graphics and web
designers who identify more as artists [27, 29]. Chilana et
al. studied industry professionals in non-programming roles
(e.g., sales, marketing, product management) who try to learn
programming to communicate better with their engineering
colleagues [23, 73]. Dasgupta and Mako Hill extended the
Scratch blocks-based programming environment to enable
K-12 children to perform analysis on data generated by mem-
bers of the Scratch online community [26]; although children
do not yet have professional identities, they are able to use
Scratch programming as a conduit to develop computational
and data-oriented thinking skills. What all of this work has
in common is that it focuses on teaching programming to
learners who do not self-identify as programmers.
Along similar lines, the instructors we interviewed self-

identified as data scientists, data analysts, researchers, or
more generally, the umbrella term “scientist"; since their stu-
dents are junior members of their peer groups, they would
also likely identify as such. To our knowledge, we are the first
to characterize the challenges involved in teaching the topic
of data science in diverse professional settings. Some of our
findings corroborate those of prior work on how program-
ming is perceived as a means to an end rather than as some-
thing to be intrinsically enjoyed for its own sake [23, 29].

3 METHODS
For this study we interviewed 20 data scientists who teach
in a diverse variety of settings across industry and academia.
We recruited participants in-person at both corporate and
academic conferences, online through social media posts and
emails, and via snowball sampling.

Each interview lasted 45 to 60 minutes and was conducted
either in-person or via video conferencing software. Partici-
pants were not paid. Interviews were semi-structured and fo-
cused on what material is being taught in their courses, how
they perceived student experiences, and what challenges
they faced. We encouraged, but did not require, each partic-
ipant to bring sample teaching materials to walk through
together at our interviews. Guiding questions included:

• Describe the overall setting(s) in which you teach.
• What are the core concepts you teach in your courses?
• Which programming languages and tools do you use to
teach? What technological challenges have you faced?
• Can you walk through the structure of a typical meet-
ing of your course? [with optional course materials]

ID Gender Age Degree Field Sector Workplace Teaching setting(s) Students
P1 F 25–34 PhD Biostatistics Academia R1 university workshops, online 1000+
P2 M 25–34 PhD Biostatistics Academia R1 university workshops, online 1000+
P3 F 25–34 MS Genomics Industry R&D nonprofit workshops, online 1000+
P4 F 25–34 PhD† Education Industry Startup company online 350
P5 F 25–34 PhD Genetics Academia R1 university ugrad/grad courses 20
P6 F 25–34 MPH Medical stats Academia Medical school workshops 20
P7 F 35–44 PhD Marine biology Academia Research institute workshops 15
P8 M 25–34 PhD Statistics Academia R1 university grad course, workshops 20
P9 F 35–44 PhD Neuro/genomics Academia R1 university grad course, workshops 20
P10 M 25–34 PhD† Biostatistics Academia R1 university grad course 20
P11 F 35–44 PhD Psychology Academia Medical school grad course, online 1000+
P12 F 45–54 MS Psychology Industry Coding bootcamp bootcamp 30
P13 F 35–44 BS Sci/tech studies Industry Mid-sized company workshops 20
P14 F 25–34 PhD Statistics Academia Liberal arts college ugrad course, workshops 30
P15 F 35–44 PhD Statistics Academia R1 university ugrad course, workshops 30
P16 M 25–34 PhD Neuroscience Industry Pro sports franchise online video livestreams 20
P17 M 25–34 BS Math/business Industry Startup company online 1000+
P18 F 25–34 MS Library sci. Academia R1 university ugrad/grad courses 15
P19 F 25–34 BS English/stats Industry Mid-sized company workshops 20
P20 F 45–54 MS Management Industry Open-source nonprofit workshops 25
Table 1: The 20 data science practitioner-instructors we interviewed: F=female, M=male. For PhD†: P4 left a PhD program, and
P10 is currently a PhD student. R1 means major research university. ‘Students’ is approximate number of students per class.

• What, if anything, is especially challenging about teach-
ing this material? Where do you see students strug-
gling most?

The lead author recorded notes and quotations during each
interview. After all interviews were completed, the research
team (two members) iteratively categorized them together
into major themes using an inductive analysis approach [24].

Interview Participant Backgrounds
Table 1 summarizes our 20 participants’ demographic and
professional backgrounds.We strove for diversity across mul-
tiple dimensions, such as gender, age, field, and occupation.
Participants’ academic degrees include bachelors, masters,
and PhDs in fields ranging from the life sciences to the behav-
ioral sciences to the humanities. Most notably, none of the
participants had formal degrees in computer science (CS) or
related fields. This sample is representative of our anecdotal
experiences that most working data scientists today do not
come from formal CS backgrounds.
Participants work at a wide range of institutions: 8 in

industry, 12 in academia. Workplaces included startups, mid-
sized companies, nonprofit organizations, and universities.
Most notably, almost none of our participants (even those
in academia) work as full-time data science instructors: In-
stead, they are scientific researchers, business analysts, or

data scientists who teach part-time for supplemental income
or as volunteer outreach for their professional community.
P14 is the only exception; she was a visiting assistant pro-
fessor of data science. This distribution of occupations re-
flects our anecdotal observations that, at the moment, there
are relatively few people who teach data science as their
primary job. (Faculty who teach in data science interdisci-
plinary programs also usually teach and do research in their
home departments.)
Related to this diversity of occupations is the diverse va-

riety of settings where these practitioner-instructors teach.
These include standard university courses of varying sizes
(ugrad=undergrad, grad=graduate course in Table 1), day-
or week-long workshops such as Software/Data Carpen-
try [4, 75], months-long bootcamps, online courses with
thousands of students, and even livestreams (see P16 below).
To showcase examples of the range of instructor back-

grounds, we highlight P7 and P16: P7 is a marine data scien-
tist at an oceanography research institute who travels around
the world both to perform research fieldwork and to teach
data science workshops to researchers. P16 is a neuroscience
PhD currently working as a sports data analyst for a U.S. pro-
fessional sports team; as a hobby, he offers free data science
lessons via video livestreams on Twitch.tv [38].

Twitch.tv

Study Design Limitations
Although we strove to include instructors from a diverse
array of demographic and professional backgrounds, our
personal participant recruitment and snowball sampling led
to some limitations: We found only two participants in the
45–54 age range, and nobody who was 55 or older. All of our
participants identified as cisgender. None were underrepre-
sented minorities in STEM fields. Everyone except for P8
(Australia) and P9 (Canada) was based in the United States.
Follow-up studies that recruit from broader demographics
would improve the external validity of our findings.

In terms of technology stacks, all participants taught using
open-source languages and tools (e.g., Python, R), so we were
not able to study data scientists who work in closed-source
proprietary ecosystems such as Matlab, Mathematica, or
Stata. We could not reach data scientists within corporate or
government settings that were restricted by nondisclosure
agreements or security clearances. This sampling bias means
that our findings likely apply more to open-source and open-
science cultures rather than to closed-source settings.
We studied only instructors who taught formal courses

(albeit in a wide variety of settings), so that means we did
not cover informal learning via on-the-job apprenticeships
or getting on-demand help from colleagues.

We interviewed only data science instructors but did not
directly study their students.We chose to focus on instructors
because they are the ones defining both the technical and
cultural norms of this emerging professional community, and
they must also try to understand and address the challenges
faced by a wide range of students. However, without directly
studying students, our insights about student struggles will
necessarily be limited to their instructors’ interpretations.

Finally, we did not interview computer science (CS) profes-
sors who teach programming to non-CS-majors, even though
some of these courses would likely be useful for training as-
piring data scientists. Instead we focused exclusively on data
science practitioners who teach their junior colleagues since
this population has not yet been studied in prior work.

4 DIVERSE STUDENT BACKGROUNDS AND
EXPECTATIONS

We present three main sets of findings from our interviews:
student backgrounds, technical workflows, and teaching chal-
lenges. First, many participants brought up the importance of
empathizing with diverse student backgrounds and varying
expectations for what a data science course ought to offer.

Varying Backgrounds and Prior Coding Experience
Students who enroll in data science courses tend to be of
varying ages, at very different stages of their education, and
from a variety of academic backgrounds. For instance, a

STEM postdoc may take a Software Carpentry workshop
(e.g., taught by P3, P9), or a mid-career business analyst may
take an online course on the DataCamp [5] platform. 6 of our
20 participants [P2, P8, P9, P10, P16, P19] mentioned that they
regularly teach students who have never done any sort of
programming before, and that these students are sometimes
intermixed with others who have significant programming
experience.
Due to such widely varying backgrounds, it is difficult

to establish a common ground from which instruction can
begin. P9, a neuroscientist who teaches graduate courses and
workshops, mentioned that: “Student heterogeneity is higher
than any of us could have anticipated." P3, an instructor from
industry, faces a similar issue: “It is always a challenge to
not make assumptions about what people know or don’t know.
There is a huge diversity of learner backgrounds." This issue
persists even for P6, who teaches at a medical school, where
a seemingly more narrow set of student demographics still
manifests a wide array of backgrounds: “The people in my
workshop are all professionals: mostly professors, statisticians,
and clinical data coordinators. And there’s still a big variety
of programming and math backgrounds." Thus, instructors
faced the challenge of creating courses that could incorpo-
rate engaging problems for students with different kinds of
backgrounds and prior knowledge.

Despite these instructional design challenges, since none
of our participants had formal computer science training,
they sometimes felt better equipped to empathize with their
students, who also do not come from computer science back-
grounds. For instance, P17, a data scientist at a startup who
teaches online courses, mentioned that: “From a teaching per-
spective, I feel blessed that I didn’t study computer science. I’m
self-taught, and I feel that makes it easier for me to empathize
with my students and anticipate their problems."

Student Expectations and Motivations for Coding
“Students are grudgingly learning to program;
they’re really interested in analyzing their data."
-P3
“Most people I see have to learn to code in an
absolute panic for their thesis." -P7

Unlike many students in introductory computer science
(i.e., CS1) courses [60], data science students are not enrolling
because they want to learn about programming or to become
full-time programmers. Rather, they are motivated to learn to
solve concrete problems in their own work via data analysis.
The above quote from P3 comes from a part of our conver-
sation where she explained how grad students seek out her
workshops at the moment when the amount of data or the
sophistication of required analyses outgrows the capabilities
of spreadsheet software (e.g., Excel) they have been using.

P7’s quote recalled similar experiences, where the scien-
tists she teaches already formulated hypotheses and collected
data before they realize they need to learn programming to
look for appropriate insights in their data: “Their entry point
to coding is when they’re already deep into a scientific question."
We also heard from others in academia that their students
do not seem to seek out programming out of a general de-
sire to “learn to code," but rather see it as a means to render
their data into meaningful scientific results. Therefore the
challenge for instructors is providing just enough of an un-
derstanding of computing environments and programming
to demonstrate relevant data analysis methods.

Instructors in industry face similar challenges. P12 teaches
at a coding bootcamp for rural U.S. residents where the data
that students learn to analyze is provided by potential em-
ployers. Student motivations for joining the nine-month
bootcamp tended to be more directly career-oriented, and
they also have widely varying levels of prior experience:
“We have helped many folks retrain for new jobs. Some stu-
dents have never written code while others are experienced
developers."

Eight instructors reported some students being motivated
to join their course because they were excited to learn about
one specific tool for data visualization, manipulation, or mod-
eling [P1, P2, P4, P5, P6, P7, P13, P17]. For instance, P6 teaches
medical researchers, who in this case had heard about the util-
ity of R’s ggplot2 [7] data visualization library: “They’re very
excited about one specific thing: plotting, making dashboards,
basically any immediately useful data product." Instructors
found these concrete expectations as both a valuable avenue
for motivating students and as a source of frustration. They
were challenged by students who were not motivated to un-
derstand how a tool fits into the overall technology stack
such as Figure 1. P6 continued: “I have heard, ‘I don’t care how
it thinks, I just want to make a cool graph.’" This frustration
is exacerbated by hype around certain tools, which sets high
expectations from their students’ managers or supervisors
for what that tool can do for their team. For instance, P1
teaches both graduate students and professionals who want
to demonstrate immediate value with a tool soon after taking
a seminar: "Students are under lots of pressure to take away
particular skills [back to their team]."

5 TEACHING DATA-ANALYTIC WORKFLOWS
Although many students viewed coding as a means to an
end (see prior section), nonetheless instructors emphasized
teaching a more disciplined data-analytic workflow using a
modern stack of open-source tools (e.g., Figure 1). In other
words, they did not simply want students to create one-off
scripts but rather wanted to provide them with the skills to
write more robust and reproducible scientific code.

As instructors walked through the technical contents of
what they taught, we noted the most salient points they
raised that differed from what is typically taught in CS-
oriented programming courses [22, 30, 68]. Most notably,
these instructors emphasized workflows that centered on
the integration of code, data, and communication rather than
on the more algorithmic foundations of computing.

Teaching Data-Analytic Programming
Although data can certainly be analyzed and visualized using
spreadsheets or other specialized GUI tools (e.g., Tableau),
our participants all opted to teach programming languages
such as Python (N=6) and R (N=14) so that: a) students could
construct more reproducible scripts to automate their work-
flows, and b) students could learn to access the vast ecosys-
tems of statistical and data analysis libraries in those lan-
guages, which is likely what they will be doing on the job.
Five instructors mentioned teaching how to create pro-

grammaticworkflows for shaping data andmoving it through
an analytic process [P2, P3, P7, P11, P15]. For example, P11
demonstrates a workflow where she uses several R libraries
to read data into her computing environment from sources
on the web and from local files; she then combines these into
one dataset using several other libraries, until she has one
canonicalized tidy [74] data table (i.e., “data frame") where
each row is an observation from an experiment and each
column represents a variable that was measured. She then
computes different statistics about groups in this table, cre-
ates figures and statistical models using other libraries, and
finally writes a resulting narrative using R Markdown [9], a
computational notebook for R. P14 echoes P11’s strategy of
synthesizing multiple data inputs into one rectangular data
frame: "It’s rectangle-based teaching or pipeline-based pro-
gramming. Everything is based on modifying one data frame."
This sort of data-analytic programming [14, 32] differs

from the style of programming that is typically taught in
introductory CS courses. Drawing from all of our interviews,
the main data structure taught by these instructors is a tab-
ular (“rectangular") data frame; traditional CS1/CS2 data
structures such as linked lists, binary trees, stacks, queues,
and hash tables were rarely mentioned. Canonical operations
on these tabular data frames include filtering and rearrang-
ing rows/columns, combining groups of rows and columns
to create derived datasets, and creating new columns based
on combining or splitting other columns. These operations
are performed with calls to special vectorized functions that
operate across an entire data frame at once; thus, instructors
do not need to teach students how to iterate through data
with explicit control flow such as for-loops, while-loops, or
recursive function calls.

Similarly, teaching students to create abstractions such as
functions, classes, and modules is common in CS-focused

programming courses [22, 68], but data science instructors
often do not emphasize their importance, since many data
science tasks can be done without these abstractions. For
instance, P14 mentioned that “maybe ten percent of the people
I teach are going to need to write their own R function." Instead,
instructors emphasized that programming for data science
involves connecting existing APIs together in order to shape
them for the analytic tasks at hand. For example, a data
scientist may need a software library to import geospatial
data, another library to shape that data, another library to
calculate statistics or build models from that data, and then
yet another library to visualize the data or resulting models.

In addition to programming, instructors also emphasized
data management skills. P7 mentioned: “A ton of time is spent
just showing people how to manage folder architecture and
organization.". Data science projects often involve gathering
a collection of raw data files, metadata for each data file
(i.e., codebooks with column descriptions), several stages of
processed data files, and other data products that are cre-
ated during the analysis such as rendered figures and reports.
These filesmust all be carefully organized in a directory struc-
ture so that analysts can track provenance and so that the
correct versions of files can be programmatically accessed.

Teaching Data-Oriented Communication
In addition to teaching programming, statistics, and analyt-
ical thinking, the instructors we interviewed also placed a
heavy emphasis on the importance of writing, public commu-
nication, and framing analysis results in a broader societal
context. P15 teaches both industry workshops and under-
graduate courses, and mentioned that communication is the
centerpiece in both settings: “Communication about ideas is
much more important [than code] and arguably the goal of
data science. I think this is not as much the case in computer
science." She is familiar with the computer science under-
graduate curriculum at her university, and by comparison
says that her students do significantly more writing and
public speaking. P12 is an instructor at a coding bootcamp
who pushes her students to write detailed prose for their
analyses and to present their findings in class: “Students are
constantly presenting and articulating their insights." Simi-
larly, P18 teaches social science graduate students who often
want to incorporate more quantitative methods into their
qualitative research:

“In my programming class I make them write es-
says. It’s important that I have them talking about
their project every single week. I take the commu-
nication component of the class as my primary
focus." -P18

Tools for communicating data science outputs are just as
emphasized as tools for programming or statistical model-
ing. The majority of participants (14 out of 20) tightly inte-
grated computational notebooks, including Jupyter [3] and
R Markdown [9], into their curriculum to enable students to
interleave runnable code and explanatory text. Both of these
tools allow students to easily write in a literate programming
style [45], where code and prose coexist in the same docu-
ment. These instructors also used notebook technologies for
delivering their course materials. For example, P5 illustrates
statistical concepts such as the law of large numbers in a
notebook, which enables students to adapt her code in order
to play with this law’s statistical properties.
Instructors also mentioned that they felt an important

difference between data science courses and more CS-based
programming courses is that students are able to create pol-
ished data artifacts that they can communicate to others even
with relatively little training time. For instance, students can
learn to visualize their own research data in just a one-day
workshop by using the proper API calls. In contrast, it can
take much longer in a CS course to go from “Hello World"
examples to building compelling and useful real-world apps.
P15 uses example datasets to motivate students during the
first class meeting: “By minute 10 of class they need to be able
to have made a data visualization." She often starts lessons by
showing a data product that students will learn to produce
that day: “When making a cake you look at pictures of the end
result cake. You don’t look at pictures of eggs and milk!"

Teaching Authentic Practices
Since our instructors were data science practitioners, they
emphasized teaching students authentic work practices with
tools that they actually used on the job. They taught exclu-
sively open-source technologies for data analysis and com-
munication, made materials that they built for their courses
publicly available, and, most notably, distributed those ma-
terials using the same tools that they teach their students to
use for sharing code, data, and analyses. P7, a marine science
researcher who teaches small-group workshops to her peers,
mentioned: “I made all of my materials available on GitHub
beforehand for reference." This way, her students can follow
along with her during class, and they can refer back to her
materials after the course has finished. She also believes it is
important to guide students through the emotional tribula-
tions of understanding these tools, so she writes in a personal
style unlike that of traditional reference guides: “I wrote my
own materials to share how I was feeling when I was learning."

Instructors’ uses of the GitHub platform are not limited to
just distributing their own course materials [77]. Although
GitHub is not thought of as a data science tool, our instruc-
tors showed students how to use it to connect to the broader
data science community. P9 brought up the importance of

structuring the data science masters degree program she
is helping launch so that students can build a public-facing
portfolio of data science projects: “All of the courses are project
based and all projects are done on GitHub. It helps them build
a portfolio." Instructors see having an online portfolio as
an authentic work practice in several ways: Practitioners
often share their analyses as notebooks on GitHub so that
others can expand upon and comment on them [64]. They
also share code on GitHub to get feedback and contributions
from the community. Finally, employers often ask for the
GitHub profiles of data science job applicants, so instructors
are motivated to help students create shareable projects.

By showing students the same tools they use in their daily
practice, these data scientists are not merely serving as in-
structors, but rather as exemplars of authentic expert be-
havior that sets an example for junior members of their
community of practice [48]. This contrasts with, say com-
puter science university professors or K-12 teachers, who are
not in the community of practice of most of their students
(i.e., the majority of CS students do not aspire to become CS
teachers).

6 CHALLENGES IN TEACHING DATA SCIENCE
The instructorswe interviewed faced threewidely-mentioned
sets of challenges in their teaching: authenticity versus ab-
straction, finding and curating data sets, and acclimating
students to living with uncertainty in data analysis.

Authenticity versus Abstraction in Software Setup
In addition to decisions surrounding instructional content
(i.e., what to cover in their course), instructors must also
decide the extent to which they are going to teach students
about managing the details underlying their computing en-
vironments. Although maintaining these environments re-
quires significant technical knowledge, these system config-
uration and administration logistics are usually unrelated to
the data analytic skills taught in the rest of the course. While
lamenting already-limited class time, P17 rhetorically asked:
“How much do we really want to teach about system admin-
istration and .bashrc?" We identified three approaches that
instructors took: 1) Desktop: Ten instructors taught students
to configure their own personal computers at the start of
class. 2) Server : Five instructors set up a pre-configured server
computing environment that can be accessed through a web
interface. 3)Web application: Five used a specialized web app
(e.g., DataCamp [5]) that emulates a scientific computing en-
vironment and guides students through lessons with videos
and coding exercises. Each approach has tradeoffs:

1) Desktop setup: Most instructors taught students to
set up an authentic computing environment and toolchain
on their own computers. P10 reported that companies who
hire their students often do not have standardized analysis

tools in place, so “employers expect students to bring their own
tools." P11 felt that her sense of self-sufficiency in setting
up her own environment informed her decision to teach
about tooling: “It’s important to teach students how to work
on their setup. I want them to be able to work the same way
that I work." Teaching these system administration skills,
though unrelated to data analysis or to any scientific domain,
provides a more authentic experience so that students can
understand how the pieces of the stack (e.g., Figure 1) fit
together.

However, this desktop approach is challenging for instruc-
tors because of the wide array of versions of operating sys-
tems, programming languages, and libraries each student
may require to be configured on their machine. P2 dealt with
a bevy of issues in the workshops that he teaches, including
insufficient user permissions on work computers, outdated
operating systems, and hieroglyphic configuration errors:
“These students bring in a wide variety of computers each with
their own installation, permissions, and dependency issues."
He spends the start of many workshop sessions battling
these complications on student computers. This process is
daunting for students as well; P4 mentioned that “data sci-
ence requires a level of intimacy with your computer that my
students are not used to." For many students, it is their first
time installing and using software through a command-line
interface.

2) Server setup: Instructors can avoid this perennial start-
of-class setup struggle by setting up a computing environ-
ment on a web server. Server-based environments such as
JupyterHub [8] and RStudio Server [10] provide access to
a virtual file system, command-line interface, Python and
R interpreters (respectively), and hosting for computational
notebooks. These systems have the potential to enable amore
equitable computing experience to all students since they
can be accessed from web browsers on low-cost or commu-
nal machines. For instance, P20 often gives seminars about
how to use Jupyter. She emphasizes how these server-based
systems put her students on the same playing field, instead
of certain students being disadvantaged because they cannot
afford to buy the latest hardware: “Using shared resources
like JupyterHub provides more equitable access to a computing
environment. I don’t need to be the wealthy kid with a new
computer, in fact all I need is a [low-cost] Chromebook."

A server-based configuration shifts much of the setup bur-
den onto instructors, thus letting students worry less about
their environment and focus more on learning data science.
However, students miss out on the authenticity of learning
how to configure their ownmachines. Also, instructors (most
of whom are not full-time teachers) need to work with their
local institutions to maintain a cloud-based computing envi-
ronment for as long as they continue to teach, and must also
figure out how to procure sustainable funding to pay for it.

3)Web application setup: The third and most abstracted
strategy for setting up a computing environment involves
creating courses on a fully-hosted web application such as
DataCamp [5] or Dataquest [6]. Both are web apps that pair
a Python/R console with guided tutorials that walk students
through programming exercises and videos. Each exercise
evaluates the correctness of commands that are entered into
an emulated console, or they evaluate the correctness of
scripts that are written by students in a simple text editor in-
cluded in the web app. Instructors write lessons in a domain-
specific markup language, and then upload lesson files to the
web application. Students must pay to access most lessons
on both DataCamp and Dataquest.
The advantage of these web applications is that they re-

quire no configuration or maintenance by either instructors
or students: Instructors only need to write a lesson and then
students can access it as long as they have an internet connec-
tion. However, participants [P2, P3, P11] mentioned several
limitations: a) The environment provided by these services
was not always congruent with the behavior of the real desk-
top computing environments they are attempting to emulate.
Therefore, correct coding answers are sometimes flagged
as incorrect, while incorrect answers sometimes passed au-
tomated test cases. b) In addition, these web applications
are not able to integrate with existing command-line tools,
external libraries, and other desktop applications in a data
scientist’s real-world workflow. c) Lastly, these web applica-
tions are used only for learning on the given examples and
cannot be used for working on arbitrary data science tasks,
so students may have trouble transferring what they learn
here to their jobs. In sum, this setup makes it the easiest for
instructors to focus on teaching the contents of data ana-
lysis but greatly sacrifices the authenticity of actual work
practices.

Finding and Curating Datasets
Data science often takes place within the context of another
discipline. P4 mentioned: “We shouldn’t teach data science
alone outside of any domain." Providing the right context for
learning a new analysis concept requires first finding data
that illustrates that concept well without being overly com-
plicated. For example, illustrating a statistical concept like
Simpson’s Paradox [72] requires a realistic-looking dataset
where the overall data has a positive correlation but the
correlation within groups is negative. Illustrating domain-
specific concepts within specific scientific or business fields
can require datasets with features that are even more subtle.
Instructors struggle to find datasets in their domain that

both feel authentic and are useful for teaching specific con-
cepts, but without overwhelming students with their size or
complexity. P1 confronted many of these problems teaching
both online and in workshops: “It’s hard to find a dataset that

exactly fits your problem. I’ve spent weeks looking for a dataset
to teach with." She eventually found a solution by asking
her students to use data collected from their own personal
computing devices: “One solution is to get students to use their
own data! It’s interesting and personal to them." But even if
students have access to these devices, that kind of personal
informatics data will only be relevant in certain disciplines.
Student-provided data is not always ideal, though. For

example, P7 is a marine scientist who works with researchers
that each have very different types of field data. In order to
teach certain core tools of data science, and to make sure
that her course is relevant for all students, she mindfully
abstracts away the specifics of working with a particular
kind of data. She tells her students: “We are deliberately not
using your data in order for you to learn about how to think
about data itself." Instead of having each student use data that
they collected as part of their research, she curates simpler
datasets that she finds online, which allow her to illustrate
shaping and cleaning tasks that all of her students will need
to know.

Data repositories—websites where researchers make their
data publicly accessible—are another source that instruc-
tors commonly explore for teachable datasets. Unfortunately
some come with licensing limitations. For example, P1 was
frustrated by the stipulations of the Pew Research Center’s
data repository [18]: “There are great data repositories like
Pew, but they won’t let you modify or distribute their data."
Pew distributes data that is relevant to P1’s area of teach-
ing, but she is prohibited by their data sharing agreement to
embed the data within her course materials.
Dataset search within repositories is also challenging.

For instance, P11 teaches biomedical data analysis, so the
datasets that are relevant to her teaching are very specific to
that field. She has to constantly monitor data repositories in
hopes of finding better datasets: “I periodically comb through
PLoS open data, Data Dryad, and Harvard Dataverse looking
for data to teach with." Even after many searches, she believes
it is still hard to know what data in these repositories will
be useful for her course: “People who share data tend to do
complex analysis which doesn’t make it great for teaching."
Even if an instructor can find data that looks relevant to their
course, they then need to invest a considerable amount of
time exploring the dataset to ensure that it illustrates the
analytic concepts that they want to teach. P5 added: “There is
a major upfront cost to familiarizing your self with a dataset."
Finally, there remains a gap where data that is used to

teach students does not resemble the data that those students
will later see on the job. P11 was concerned about how this
impacts her ability to prepare students to work effectively
after they leave the classroom: "It’s hard to find data that
looks like the data my students will get in their jobs."

Coping with Uncertainty
“Everything is always on fire! How do we teach
people to live with this reality?" -P4

P4’s sentiment reflects the reality that data science prac-
titioners often sit at the intersection of multiple disciplines
and must adapt to rapidly-changing needs from stakeholders
such as academic research colleagues, corporate managers,
and software engineers. Thus, they wanted to teach not only
the technical skills involved in data science, but also the
meta-skills for coping with uncertainty on the job.
To this end, participants highlighted the importance of

understanding their students’ emotions while programming,
particularly their frustrations when debugging high-level
API calls (such as data visualization libraries) that hide many
details behind each line of API code. They show students
that it is normal not to know everything about the libraries
that they are working with, especially by taking frustrating
moments and using them as a teaching opportunities. For
instance, they make sure not only to show students how to
search the web efficiently, but to also normalize this practice
for them. Whenever P7 is unsure about how to answer a
student’s question, she walks them through how to find the
answer online: “I say ‘I don’t know’ all the time. If I can’t find
the answer in the documentation then we Google it together
right then." This sort of highly-personal classroom interaction
is challenging for instructors to maintain, especially as class
sizes grow, since it requires both personalized one-on-one
attention and also an emotional investment in individual
student needs.

Another important meta-skill that our participants teach
is how to keep one’s technical skills up-to-date. Maintain-
ing relevance in the face of fast-changing tool ecosystems
requires being able to work effectively with tools despite not
achieving much mastery over them. However, there is still
no consensus on what specific technologies data scientists
ought to know, so this reality results in uncertainty for in-
structors about what should be included in their courses. P9
has already revised the graduate curriculum for her depart-
ment’s new data science masters program: “It’s hard to figure
out what’s essential considering that the field is changing so
quickly." P5 had a similar experience with frequently updat-
ing the contents of her course to keep up-to-date: “Every
year the technology could be different in a data science class."

7 DISCUSSION AND DESIGN IMPLICATIONS
Our findings reveal a contrast in expectations between the
novice data scientists who are taking these courses and the
expert practitioners who are teaching them. Novices come
into courses as end-user programmers [46] who want to
learn just enough coding to be able to solve their own per-
sonal data analysis problems (e.g., “in an absolute panic for

their thesis [work]" -P7). Instructors must empathize with
that desire, but at the same time they also strive to teach a
more disciplined technical workflow that integrates profes-
sional tools for code (e.g., Python or R libraries), data (e.g.,
manipulating tabular data frames), and communication (e.g.,
computational notebooks). In essence, they would like for
students to not merely create one-off ad-hoc personal scripts,
but rather to be able to eventually acquire the skills necessary
to join the community of practice [48] of professional data
scientists—for them to transform from being simply end-user
programmers to being end-user software engineers [46] or
professional end-user developers [65].

To facilitate this transition, instructors teach using authen-
tic tools (e.g., Figure 1) that they use on the job. However,
tools for professional use may not necessarily make the best
tools for teaching. How can we design better tools for teaching
data science? We explore some ideas in the rest of this paper.

Designing New Data Science Learning Environments
Our participants’ approach to teaching was to try to scale
up an apprenticeship model [11, 33] by bringing production-
grade tools to their students, but those tools were not origi-
nally designed with teaching in mind. This approach does
not provide a gentle point of entry for newcomers to data
science who may not have prior experience in programming,
performing statistical analyses, or even thinking critically
about data.

Years before data science became a popular term, the sta-
tistics community had been reflecting on this rift between
tools optimized for doing statistics and those for learning
it. Biehler outlined a vision for the components that an in-
tegrated tool for both learning and doing statistics would
require [19], and McNamara built on those ideas to advo-
cate for tools inspired by developments in the computing
education community [52]. In sum, she envisioned a “blocks-
programming environment along the lines of Scratch [62]."

Transferring this vision into data science, there have been
recent efforts to extend Scratch with data access blocks [26],
to add functional programming constructs into blocks lan-
guages such as GP [12] that could be adapted for vectorized
data manipulation, and to extend other pedagogical environ-
ments such as Racket with data science APIs (e.g., Bootstrap
Data Science [20]). However, those languages were not orig-
inally designed with teaching data science in mind.
Whereas block-based languages like Scratch tend to be

object-oriented (i.e., on-screen sprites interacting with one
another), we envision a block-based language for data science
being data-oriented. By data-oriented we mean that such a
language should focus on entities representing datasets and
output data products such as statistical models and visual-
izations. In the way that a “block" in Scratch represents a
block of code in a language like Java, the representations of

data-analytic programming blocks should reflect the work-
flows that data scientists use and ideally help prevent novice
misconceptions about those workflows. One of our partic-
ipants (P12) mentioned: “Different programming languages
give different mental models of data manipulations." Thus we
believe that a block-based language for data science should
be designed afresh from the ground up, not by putting layers
atop existing imperative or object-oriented blocks languages.

Obtaining High-Quality Datasets for Teaching
A central challenge for many of our instructors was the
difficulty of finding datasets that were relevant for a par-
ticular data-analytic concept that they wanted to teach. In-
structors were highly motivated to find interesting datasets,
both for illustrating general statistical phenomena and for at-
tributes that are specific to their domain. We envision two fu-
ture research directions for improving access to high-quality
datasets for teaching: better tools for finding data, and new
tools for synthesizing data.

Tools for Finding Data: Several instructors we inter-
viewed vigilantly monitor online data repositories for new
datasets they can use for teaching. Instead of having to mon-
itor data repository sites, ideally they should be able to use a
dataset search tool to look for data that might interest them.

There already exist a number of prominent dataset search
tools, some of which focus on specific domains including
data.gov [13], ICPSR [58], NCBI [66], and Google Dataset
Search [57]. These tools allow search queries on some com-
bination of the data itself and metadata about them. This
approach is useful for finding datasets that include a specific
kind of variable or pertain to a particular topic. However,
it fails to capture the notable features of a dataset: e.g., the
various correlations, associations, relationships, and quirks
within the data that are often the essence of what an instruc-
tor would like to illustrate in class. Thus, one could design
an improved search system where those notable features
could be included in queries. For example: searching for a
dataset that shows increasing periodicity in electromagnetic
intensity from a star, or finding a factor that confounds the
relationship between two other factors in gene expression
data. An alternate query-by-example mechanism is to spec-
ify a model or parts of a model, and the system will use that
specification to perform searches. For example: searching
for population growth rate and another variable that grows
logarithmically.

NewTools for SynthesizingData: Even ifmore advanced
dataset search tools did exist, there is still no guarantee that
the data an instructor is looking for is actually available in
the wild. Ideally instructors should be able to synthesize ar-
tificial datasets that would both appear realistic and exhibit
the desired features for their teaching.

One approach for building such a dataset synthesis tool
would be a constraint-based system (inspired by program
synthesis techniques [36, 63]) where an instructor would
iteratively build relationships between variables. One could,
for example, specify the range of variables X and Y, and then
generate their correlation. Each additional variable and addi-
tional relationship introduced to the generated dataset would
need to not interfere (or interfere only within a set level
of tolerance) with previously specified relationships. Data
would not necessarily have to be generated from scratch;
users could start with a real dataset and then append new
variables and relationships onto it. One could imagine the
user interaction with such a system would be similar to the
work on Same Stats, Different Graphs [51]. Such a system
would enable instructors (and students) to creatively explore
the design space of example datasets that meet the given
constraints.

An even more speculative approach for synthesizing data
could be inspired by image style transfer [31, 40, 78], a deep
learning technique where the style of one image, such as van
Gogh’s painting of The Starry Night, is “transferred" onto a
target image, like a portrait—resulting in a wispy swirling
impression of a person. By analogy, one could create a dataset
style transfer system to transfer the “style" of one dataset (e.g.,
its salient properties such as periodicity, multifactorial asso-
ciations, skewness/kurtosis [56]) to another dataset. Such a
system would allow for more creative control for instructors
to borrow subtle patterns in data from other domains that
they could apply in their own desired domain. It would also
allow students to each bring their own personal datasets to
class but let the instructor transfer the style of a canonical
dataset that exhibits the properties they want to teach onto
each student’s dataset; this empowers each student to work
with their own individual data but learn the same lessons.

8 CONCLUSION
We have presented an interview study of 20 data scientists
who teach in diverse settings across industry and academia.
Despite the fact that none of them come from formal com-
puter science backgrounds, they teach a set of sophisticated
technical skills that form a coherent stack of technologies
to enable open and reproducible science. They also empha-
size teaching students to communicate and contextualize
the outputs of their analysis work. These instructors work
to integrate their students into their own communities of
practice by using real-world tools with authentic datasets.
Data science is a technical specialty that continues to

grow in prominence across many disciplines. In the coming
years, we should work toward providing its practitioners and
learners with the same levels of support in terms of both tools
and community that have so far been developed for more
traditional programming fields. In addition to new technical

systems for teaching data science, it is also critical to design
ways to help novices understand the social systems that
underlie such tools. For instance, discussions about equity,
ethics, and algorithmic bias are critical for how data science
is taught and who ends up even receiving such an education.
In sum, data science education is now a quickly growing

form of computing and end-user programming education
that is distinct from other related genres commonly studied
in HCI (e.g., end-user programming, conversational program-
ming [23], interaction designers learning programming),
with its own unique challenges that require researchers to
design new kinds of tools and workflows to support. We view
this paper as an invitation to the HCI community—which
has already produced myriad research insights in computing
education and end-user programming—to increasingly study
the emerging frontier of data science learning environments.

ACKNOWLEDGMENTS
Thanks to the UC San Diego Design Lab, rOpenSci, Elissa
Redmiles, and Os Keyes for their feedback, and NSF award
#1735234 for funding.

REFERENCES
[1] 2017. The 50 Most Popular MOOCs of All Time. http://www.

onlinecoursereport.com/the-50-most-popular-moocs-of-all-time/.
[2] 2017. The Complete List of Data Science Bootcamps & Fellowships.

http://www.skilledup.com/articles/list-data-science-bootcamps.
[3] 2017. Project Jupyter. http://jupyter.org/.
[4] 2018. Data Carpentry: Building communities teaching universal data

literacy. https://datacarpentry.org/. Accessed: 2018-09-20.
[5] 2018. DataCamp: Learn R, Python & Data Science Online. https:

//www.datacamp.com/. Accessed: 2018-09-20.
[6] 2018. Dataquest: Learn Data Science With Python And R Projects.

https://www.dataquest.io/. Accessed: 2018-09-20.
[7] 2018. ggplot2 is a system for declaratively creating graphics, based on

The Grammar of Graphics. https://ggplot2.tidyverse.org/. Accessed:
2018-09-20.

[8] 2018. JupyterHub: A multi-user version of the notebook designed
for companies, classrooms and research labs. http://jupyter.org/hub.
Accessed: 2018-09-20.

[9] 2018. R Markdown: Analyze. Share. Reproduce. https://rmarkdown.
rstudio.com/. Accessed: 2018-09-20.

[10] 2018. RStudio for the Enterprise. https://www.rstudio.com/products/
rstudio-server-pro/. Accessed: 2018-09-20.

[11] 2018. TPI: Teaching Perspectives Inventory. http://www.
teachingperspectives.com/tpi/. Accessed: 2018-09-20.

[12] 2018. Welcome to GP! GP is a free, general-purpose blocks program-
ming language. https://gpblocks.org/. Accessed: 2018-09-20.

[13] U.S. General Services Administration. 2018. The home of the U.S.
Government’s open data. https://www.data.gov/. Accessed: 2018-09-
20.

[14] Ruth E. Anderson, Michael D. Ernst, Robert Ordóñez, Paul Pham, and
Ben Tribelhorn. 2015. A Data Programming CS1 Course. In Proceedings
of the 46th ACM Technical Symposium on Computer Science Education
(SIGCSE ’15). ACM, New York, NY, USA, 150–155. https://doi.org/10.
1145/2676723.2677309

[15] Craig Anslow, John Brosz, Frank Maurer, and Mike Boyes. 2016.
Datathons: An Experience Report of Data Hackathons for Data Science

Education. In Proceedings of the 47th ACM Technical Symposium on
Computing Science Education (SIGCSE ’16). ACM, New York, NY, USA,
615–620. https://doi.org/10.1145/2839509.2844568

[16] Austin Cory Bart, Dennis Kafura, Clifford A. Shaffer, and Eli Tilevich.
2018. Reconciling the Promise and Pragmatics of Enhancing Comput-
ing Pedagogy with Data Science. In Proceedings of the 49th ACM Techni-
cal Symposium on Computer Science Education (SIGCSE ’18). ACM, New
York, NY, USA, 1029–1034. https://doi.org/10.1145/3159450.3159465

[17] Austin Cory Bart, Ryan Whitcomb, Dennis Kafura, Clifford A. Shaffer,
and Eli Tilevich. 2017. Computing with CORGIS: Diverse, Real-world
Datasets for Introductory Computing. In Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science Education (SIGCSE
’17). ACM, New York, NY, USA, 57–62. https://doi.org/10.1145/3017680.
3017708

[18] Nick Bertoni and Scott Keeter. 2018. How to access Pew Research
Center survey data. http://www.pewresearch.org/fact-tank/2018/03/
09/how-to-access-pew-research-center-survey-data/. Accessed: 2018-
09-20.

[19] Rolf Biehler. 1997. Software for learning and for doing statistics. Inter-
national Statistical Review 65, 2 (1997), 167–189.

[20] Bootstrap. 2018. Data Science Curriculum (Spring 2018 edi-
tion). http://www.bootstrapworld.org/materials/spring2018/courses/
data-science/english/. Accessed: 2018-09-01.

[21] Robert J. Brunner and Edward J. Kim. 2016. Teaching Data Science.
Procedia Comput. Sci. 80, C (June 2016), 1947–1956. https://doi.org/10.
1016/j.procs.2016.05.513

[22] Ricardo Caceffo, Steve Wolfman, Kellogg S. Booth, and Rodolfo
Azevedo. 2016. Developing a Computer Science Concept Inventory for
Introductory Programming. In Proceedings of the 47th ACM Technical
Symposium on Computing Science Education (SIGCSE ’16). ACM, New
York, NY, USA, 364–369. https://doi.org/10.1145/2839509.2844559

[23] Parmit K. Chilana, Rishabh Singh, and Philip J. Guo. 2016. Understand-
ing Conversational Programmers: A Perspective from the Software
Industry. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems (CHI ’16). ACM, New York, NY, USA, 1462–1472.
https://doi.org/10.1145/2858036.2858323

[24] Juliet M. Corbin and Anselm L. Strauss. 2008. Basics of qualitative
research: techniques and procedures for developing grounded theory.
SAGE Publications, Inc.

[25] Sarah Dahlby Albright, Titus H. Klinge, and Samuel A. Rebelsky. 2018.
A Functional Approach to Data Science in CS1. In Proceedings of the
49th ACMTechnical Symposium on Computer Science Education (SIGCSE
’18). ACM, New York, NY, USA, 1035–1040. https://doi.org/10.1145/
3159450.3159550

[26] Sayamindu Dasgupta and Benjamin Mako Hill. 2017. Scratch Com-
munity Blocks: Supporting Children As Data Scientists. In Proceed-
ings of the 2017 CHI Conference on Human Factors in Computing
Systems (CHI ’17). ACM, New York, NY, USA, 3620–3631. https:
//doi.org/10.1145/3025453.3025847

[27] Brian Dorn and Mark Guzdial. 2006. Graphic Designers Who Program
As Informal Computer Science Learners. In Proceedings of the Second
International Workshop on Computing Education Research (ICER ’06).
ACM, New York, NY, USA, 127–134. https://doi.org/10.1145/1151588.
1151608

[28] Brian Dorn and Mark Guzdial. 2010. Discovering Computing: Per-
spectives of Web Designers. In Proceedings of the Sixth International
Workshop on Computing Education Research (ICER ’10). ACM, New
York, NY, USA, 23–30. https://doi.org/10.1145/1839594.1839600

[29] Brian Dorn and Mark Guzdial. 2010. Learning on the Job: Character-
izing the Programming Knowledge and Learning Strategies of Web
Designers. In Proceedings of the SIGCHI Conference on Human Factors

http://www.onlinecoursereport.com/the-50-most-popular-moocs-of-all-time/
http://www.onlinecoursereport.com/the-50-most-popular-moocs-of-all-time/
http://www.skilledup.com/articles/list-data-science-bootcamps
http://jupyter.org/
https://datacarpentry.org/
https://www.datacamp.com/
https://www.datacamp.com/
https://www.dataquest.io/
https://ggplot2.tidyverse.org/
http://jupyter.org/hub
https://rmarkdown.rstudio.com/
https://rmarkdown.rstudio.com/
https://www.rstudio.com/products/rstudio-server-pro/
https://www.rstudio.com/products/rstudio-server-pro/
http://www.teachingperspectives.com/tpi/
http://www.teachingperspectives.com/tpi/
https://gpblocks.org/
https://www.data.gov/
https://doi.org/10.1145/2676723.2677309
https://doi.org/10.1145/2676723.2677309
https://doi.org/10.1145/2839509.2844568
https://doi.org/10.1145/3159450.3159465
https://doi.org/10.1145/3017680.3017708
https://doi.org/10.1145/3017680.3017708
http://www.pewresearch.org/fact-tank/2018/03/09/how-to-access-pew-research-center-survey-data/
http://www.pewresearch.org/fact-tank/2018/03/09/how-to-access-pew-research-center-survey-data/
http://www.bootstrapworld.org/materials/spring2018/courses/data-science/english/
http://www.bootstrapworld.org/materials/spring2018/courses/data-science/english/
https://doi.org/10.1016/j.procs.2016.05.513
https://doi.org/10.1016/j.procs.2016.05.513
https://doi.org/10.1145/2839509.2844559
https://doi.org/10.1145/2858036.2858323
https://doi.org/10.1145/3159450.3159550
https://doi.org/10.1145/3159450.3159550
https://doi.org/10.1145/3025453.3025847
https://doi.org/10.1145/3025453.3025847
https://doi.org/10.1145/1151588.1151608
https://doi.org/10.1145/1151588.1151608
https://doi.org/10.1145/1839594.1839600

in Computing Systems (CHI ’10). ACM, New York, NY, USA, 703–712.
https://doi.org/10.1145/1753326.1753430

[30] Mohammed F. Farghally, Kyu Han Koh, Jeremy V. Ernst, and Clifford A.
Shaffer. 2017. Towards a Concept Inventory for Algorithm Analysis
Topics. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (SIGCSE ’17). ACM, New York, NY, USA,
207–212. https://doi.org/10.1145/3017680.3017756

[31] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. 2016. Image
style transfer using convolutional neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition.
2414–2423.

[32] Philip J. Guo. 2012. Software Tools to Facilitate Research Programming.
Ph.D. Dissertation. Stanford University.

[33] Mark Guzdial. 2015. Learner-Centered Design of Computing Edu-
cation: Research on Computing for Everyone. Synthesis Lectures on
Human-Centered Informatics 8, 6 (2015), 1–165.

[34] Olaf A. Hall-Holt and Kevin R. Sanft. 2015. Statistics-infused Introduc-
tion to Computer Science. In Proceedings of the 46th ACM Technical
Symposium on Computer Science Education (SIGCSE ’15). ACM, New
York, NY, USA, 138–143. https://doi.org/10.1145/2676723.2677218

[35] J. Hardin, R. Hoerl, Nicholas J. Horton, D. Nolan, B. Baumer, O. Hall-
Holt, P. Murrell, R. Peng, P. Roback, D. Temple Lang, and M. D. Ward.
2015. Data Science in Statistics Curricula: Preparing Students to “Think
with Data". The American Statistician 69, 4 (2015), 343–353. https:
//doi.org/10.1080/00031305.2015.1077729

[36] Andrew Head, Elena Glassman, Gustavo Soares, Ryo Suzuki, Lu-
cas Figueredo, Loris D’Antoni, and Björn Hartmann. 2017. Writing
Reusable Code Feedback at Scale with Mixed-Initiative Program Syn-
thesis. In Proceedings of the Fourth (2017) ACM Conference on Learn-
ing @ Scale (L@S ’17). ACM, New York, NY, USA, 89–98. https:
//doi.org/10.1145/3051457.3051467

[37] Stephanie C. Hicks and Rafael A. Irizarry. 2017. A Guide to Teaching
Data Science. The American Statistician 0, ja (2017), 00–00. https:
//doi.org/10.1080/00031305.2017.1356747

[38] Suz Hinton. 2017. Lessons from my first year of live
coding on Twitch. https://medium.freecodecamp.org/
lessons-from-my-first-year-of-live-coding- on-twitch-41a32e2f41c1.

[39] Daniela Huppenkothen, Anthony Arendt, David W. Hogg,
Karthik Ram, Jacob T. VanderPlas, and Ariel Rokem. 2018.
Hack weeks as a model for data science education and
collaboration. Proceedings of the National Academy of
Sciences (2018). https://doi.org/10.1073/pnas.1717196115
arXiv:http://www.pnas.org/content/early/2018/08/17/1717196115.full.pdf

[40] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. 2016. Perceptual
losses for real-time style transfer and super-resolution. In European
Conference on Computer Vision. Springer, 694–711.

[41] Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey Heer.
2012. Enterprise Data Analysis and Visualization: An Interview Study.
IEEE Transactions on Visualization and Computer Graphics 18, 12 (Dec.
2012), 2917–2926. https://doi.org/10.1109/TVCG.2012.219

[42] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Vario-
lite: Supporting Exploratory Programming by Data Scientists. In
Proceedings of the 2017 CHI Conference on Human Factors in Com-
puting Systems (CHI ’17). ACM, New York, NY, USA, 1265–1276.
https://doi.org/10.1145/3025453.3025626

[43] Mary Beth Kery and Brad A. Myers. 2017. Exploring exploratory pro-
gramming. In 2017 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC). 25–29. https://doi.org/10.1109/VLHCC.
2017.8103446

[44] Miryung Kim, Thomas Zimmermann, Robert DeLine, and Andrew
Begel. 2016. The Emerging Role of Data Scientists on Software Devel-
opment Teams. In Proceedings of the 38th International Conference on

Software Engineering (ICSE ’16). ACM, New York, NY, USA, 96–107.
https://doi.org/10.1145/2884781.2884783

[45] Donald E. Knuth. 1984. Literate Programming. Comput. J. 27, 2 (May
1984), 97–111. https://doi.org/10.1093/comjnl/27.2.97

[46] Andrew J. Ko, Robin Abraham, Laura Beckwith, Alan Blackwell, Mar-
garet Burnett, Martin Erwig, Chris Scaffidi, Joseph Lawrance, Henry
Lieberman, Brad Myers, Mary Beth Rosson, Gregg Rothermel, Mary
Shaw, and Susan Wiedenbeck. 2011. The State of the Art in End-user
Software Engineering. ACM Comput. Surv. 43, 3, Article 21 (April
2011), 44 pages. https://doi.org/10.1145/1922649.1922658

[47] Andrew J. Ko, Brad A. Myers, and Htet Htet Aung. 2004. Six Learning
Barriers in End-User Programming Systems. In Proceedings of the 2004
IEEE Symposium on Visual Languages - Human Centric Computing
(VLHCC ’04). IEEE Computer Society, Washington, DC, USA, 199–206.
https://doi.org/10.1109/VLHCC.2004.47

[48] J. Lave and E. Wenger. 1991. Situated Learning: Legitimate Peripheral
Participation. Cambridge University Press.

[49] Steve Lohr. 2017. Where the STEM Jobs Are (and Where They Aren’t).
New York Times.

[50] Geraldine Mason and Annette Jinks. 1994. Examining the role of
the practitioner-teacher in nursing. British Journal of Nursing 3,
20 (1994), 1063–1072. https://doi.org/10.12968/bjon.1994.3.20.1063
arXiv:https://doi.org/10.12968/bjon.1994.3.20.1063 PMID: 7827455.

[51] Justin Matejka and George Fitzmaurice. 2017. Same Stats, Different
Graphs: Generating Datasets with Varied Appearance and Identical
Statistics Through Simulated Annealing. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems (CHI ’17).
ACM, NewYork, NY, USA, 1290–1294. https://doi.org/10.1145/3025453.
3025912

[52] Amelia Ahlers McNamara. 2015. Bridging the gap between tools for
learning and for doing statistics. Ph.D. Dissertation. UCLA.

[53] Kevin Mickey. 2013. The best teacher is a practitioner. http://polis.
iupui.edu/index.php/the-best-teacher-is-a-practitioner/.

[54] Lijun Ni. 2011. Building Professional Identity As Computer Science
Teachers: Supporting High School Computer Science Teachers Through
Reflection and Community Building. Ph.D. Dissertation. Atlanta, GA,
USA. Advisor(s) Guzdial, Mark. AAI3500584.

[55] Lijun Ni and Mark Guzdial. 2012. Who AM I?: Understanding High
School Computer Science Teachers’ Professional Identity. In Pro-
ceedings of the 43rd ACM Technical Symposium on Computer Sci-
ence Education (SIGCSE ’12). ACM, New York, NY, USA, 499–504.
https://doi.org/10.1145/2157136.2157283

[56] NIST.gov. 2018. Engineering statistics handbook: Measures of Skew-
ness and Kurtosis. https://www.itl.nist.gov/div898/handbook/eda/
section3/eda35b.htm. Accessed: 2018-09-20.

[57] Natasha Noy. 2018. Making it easier to discover datasets. https://www.
blog.google/products/search/making-it-easier-discover-datasets/. Ac-
cessed: 2018-09-20.

[58] The University of Michigan. 2018. ICPSR Timeline. https://www.icpsr.
umich.edu/icpsrweb/content/about/history/timeline.html. Accessed:
2018-09-20.

[59] American Association of University Professors. 2018. Professors of
Practice. https://www.aaup.org/report/professors-practice. Accessed:
2018-09-20.

[60] Leo Porter, Mark Guzdial, Charlie McDowell, and Beth Simon. 2013.
Success in Introductory Programming: What Works? Commun. ACM
56, 8 (Aug. 2013), 34–36. https://doi.org/10.1145/2492007.2492020

[61] Bina Ramamurthy. 2016. A Practical and Sustainable Model for Learn-
ing and TeachingData Science. In Proceedings of the 47th ACMTechnical
Symposium on Computing Science Education (SIGCSE ’16). ACM, New
York, NY, USA, 169–174. https://doi.org/10.1145/2839509.2844603

https://doi.org/10.1145/1753326.1753430
https://doi.org/10.1145/3017680.3017756
https://doi.org/10.1145/2676723.2677218
https://doi.org/10.1080/00031305.2015.1077729
https://doi.org/10.1080/00031305.2015.1077729
https://doi.org/10.1145/3051457.3051467
https://doi.org/10.1145/3051457.3051467
https://doi.org/10.1080/00031305.2017.1356747
https://doi.org/10.1080/00031305.2017.1356747
https://medium.freecodecamp.org/lessons-from-my-first-year-of-live-coding-
https://medium.freecodecamp.org/lessons-from-my-first-year-of-live-coding-
on-twitch-41a32e2f41c1
https://doi.org/10.1073/pnas.1717196115
http://arxiv.org/abs/http://www.pnas.org/content/early/2018/08/17/1717196115.full.pdf
https://doi.org/10.1109/TVCG.2012.219
https://doi.org/10.1145/3025453.3025626
https://doi.org/10.1109/VLHCC.2017.8103446
https://doi.org/10.1109/VLHCC.2017.8103446
https://doi.org/10.1145/2884781.2884783
https://doi.org/10.1093/comjnl/27.2.97
https://doi.org/10.1145/1922649.1922658
https://doi.org/10.1109/VLHCC.2004.47
https://doi.org/10.12968/bjon.1994.3.20.1063
http://arxiv.org/abs/https://doi.org/10.12968/bjon.1994.3.20.1063
https://doi.org/10.1145/3025453.3025912
https://doi.org/10.1145/3025453.3025912
http://polis.iupui.edu/index.php/the-best-teacher-is-a-practitioner/
http://polis.iupui.edu/index.php/the-best-teacher-is-a-practitioner/
https://doi.org/10.1145/2157136.2157283
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
https://www.itl.nist.gov/div898/handbook/eda/section3/eda35b.htm
https://www.blog.google/products/search/making-it-easier-discover-datasets/
https://www.blog.google/products/search/making-it-easier-discover-datasets/
https://www.icpsr.umich.edu/icpsrweb/content/about/history/timeline.html
https://www.icpsr.umich.edu/icpsrweb/content/about/history/timeline.html
https://www.aaup.org/report/professors-practice
https://doi.org/10.1145/2492007.2492020
https://doi.org/10.1145/2839509.2844603

[62] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-
baum, Jay Silver, Brian Silverman, and Yasmin Kafai. 2009. Scratch:
Programming for All. Commun. ACM 52, 11 (Nov. 2009), 60–67.
https://doi.org/10.1145/1592761.1592779

[63] Reudismam Rolim, Gustavo Soares, Loris D’Antoni, Oleksandr Polo-
zov, Sumit Gulwani, Rohit Gheyi, Ryo Suzuki, and Björn Hartmann.
2017. Learning Syntactic Program Transformations from Exam-
ples. In Proceedings of the 39th International Conference on Software
Engineering (ICSE ’17). IEEE Press, Piscataway, NJ, USA, 404–415.
https://doi.org/10.1109/ICSE.2017.44

[64] Adam Rule, Aurélien Tabard, and James D. Hollan. 2018. Exploration
and Explanation in Computational Notebooks. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems (CHI ’18).
ACM, New York, NY, USA, Article 32, 12 pages. https://doi.org/10.
1145/3173574.3173606

[65] Judith Segal. 2007. Some Problems of Professional End User Developers.
In Proceedings of the IEEE Symposium on Visual Languages and Human-
Centric Computing (VLHCC ’07). IEEE Computer Society, Washington,
DC, USA, 111–118. https://doi.org/10.1109/VLHCC.2007.50

[66] Kent Smith. 2013. A Brief History of NCBI’s Formation and Growth.
https://www.ncbi.nlm.nih.gov/books/NBK148949/. Accessed: 2018-09-
20.

[67] Sarah L.R. Stevens, Mateusz Kuzak, Carlos Martinez, Aurelia Moser,
Petra M. Bleeker, and Marc Galland. 2018. Building a local community
of practice in scientific programming for Life Scientists. bioRxiv (2018).
https://doi.org/10.1101/265421

[68] Allison Elliott Tew and Mark Guzdial. 2011. The FCS1: A Language
Independent Assessment of CS1 Knowledge. In Proceedings of the 42Nd
ACM Technical Symposium on Computer Science Education (SIGCSE ’11).
ACM, New York, NY, USA, 111–116. https://doi.org/10.1145/1953163.
1953200

[69] Rachel Treisman. 2017. Yale to offer new major in
data science. http://yaledailynews.com/blog/2017/03/08/

yale-to-offer-new-major-in-data-science/.
[70] Alexa Vanhooser. 2018. UC Berkeley announces data science pipeline

program for students. The Daily Californian.
[71] Allegra Via, Thomas Blicher, Erik Bongcam-Rudloff,Michelle D. Brazas,

Cath Brooksbank, Aidan Budd, Javier De Las Rivas, Jacqueline Dreyer,
Pedro L. Fernandes, Celia van Gelder, Joachim Jacob, Rafael C. Jimenez,
Jane Loveland, Federico Moran, Nicola Mulder, Tommi Nyronen, Kris-
tian Rother, Maria Victoria Schneider, and Teresa K. Attwood. 2013.
Best practices in bioinformatics training for life scientists. Briefings in
Bioinformatics 14, 5 (2013), 528–537.

[72] Clifford H Wagner. 1982. Simpson’s paradox in real life. The American
Statistician 36, 1 (1982), 46–48.

[73] April Y. Wang, Ryan Mitts, Philip J. Guo, and Parmit K. Chilana. 2018.
Mismatch of Expectations: How Modern Learning Resources Fail Con-
versational Programmers. In Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems (CHI ’18). ACM, New York, NY,
USA, Article 511, 13 pages. https://doi.org/10.1145/3173574.3174085

[74] Hadley Wickham. 2014. Tidy Data. Journal of Statistical Software 59, 1
(2014), 1–23. https://doi.org/10.18637/jss.v059.i10

[75] G. Wilson. 2006. Software Carpentry: Getting Scientists to Write
Better Code by Making Them More Productive. Computing in Science
Engineering 8, 6 (Nov 2006), 66–69. https://doi.org/10.1109/MCSE.
2006.122

[76] Greg Wilson. 2018. End-User Teachers. http://third-bit.com/2018/06/
20/end-user-teachers.html. Accessed: 2018-09-01.

[77] Alexey Zagalsky, Joseph Feliciano, Margaret-Anne Storey, Yiyun Zhao,
andWeiliangWang. 2015. The Emergence of GitHubAs a Collaborative
Platform for Education. In Proceedings of the 18th ACM Conference on
Computer Supported Cooperative Work & Social Computing (CSCW
’15). ACM, New York, NY, USA, 1906–1917. https://doi.org/10.1145/
2675133.2675284

[78] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017.
Unpaired Image-to-Image Translation using Cycle-Consistent Adver-
sarial Networks. In IEEE International Conference on Computer Vision.

https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1109/ICSE.2017.44
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1145/3173574.3173606
https://doi.org/10.1109/VLHCC.2007.50
https://www.ncbi.nlm.nih.gov/books/NBK148949/
https://doi.org/10.1101/265421
https://doi.org/10.1145/1953163.1953200
https://doi.org/10.1145/1953163.1953200
http://yaledailynews.com/blog/2017/03/08/yale-to-offer-new-major-in-data-science/
http://yaledailynews.com/blog/2017/03/08/yale-to-offer-new-major-in-data-science/
https://doi.org/10.1145/3173574.3174085
https://doi.org/10.18637/jss.v059.i10
https://doi.org/10.1109/MCSE.2006.122
https://doi.org/10.1109/MCSE.2006.122
http://third-bit.com/2018/06/20/end-user-teachers.html
http://third-bit.com/2018/06/20/end-user-teachers.html
https://doi.org/10.1145/2675133.2675284
https://doi.org/10.1145/2675133.2675284

	Abstract
	1 Introduction
	2 Related Work
	Data Science and End-user Programming
	Teaching Data Science
	Practitioner-instructors
	Computing Education for Broader Populations

	3 Methods
	Interview Participant Backgrounds
	Study Design Limitations

	4 Diverse Student Backgrounds and Expectations
	Varying Backgrounds and Prior Coding Experience
	Student Expectations and Motivations for Coding

	5 Teaching Data-Analytic Workflows
	Teaching Data-Analytic Programming
	Teaching Data-Oriented Communication
	Teaching Authentic Practices

	6 Challenges in Teaching Data Science
	Authenticity versus Abstraction in Software Setup
	Finding and Curating Datasets
	Coping with Uncertainty

	7 Discussion and Design Implications
	Designing New Data Science Learning Environments
	Obtaining High-Quality Datasets for Teaching

	8 Conclusion
	References

